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Natural biological materials such as nacre �or mother-of-pearl�, exhibit phenomenal fracture strength and
toughness properties despite the brittle nature of their constituents. For example, nacre’s work of fracture is
three orders of magnitude greater than that of a single crystal of its constituent mineral. This study investigates
the fracture properties of nacre using a simple discrete lattice model based on continuous damage random
thresholds fuse network. The discrete lattice topology of the proposed model is based on nacre’s unique brick
and mortar microarchitecture, and the mechanical behavior of each of the bonds in the discrete lattice model is
governed by the characteristic modular damage evolution of the organic matrix that includes the mineral
bridges between the aragonite platelets. The analysis indicates that the excellent fracture properties of nacre are
a result of their unique microarchitecture, repeated unfolding of protein molecules �modular damage evolution�
in the organic polymer, and the presence of fiber bundle of mineral bridges between the aragonite platelets. The
numerical results obtained using this simple discrete lattice model are in excellent agreement with the previ-
ously obtained experimental results, such as nacre’s stiffness, tensile strength, and work of fracture.
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I. INTRODUCTION

Natural biological materials such as shell, bone and dentin
are composites of organic proteins and biominerals organized
at nanosize length scales. These biological materials exhibit
phenomenal fracture strength and toughness properties de-
spite the brittle nature of their constituents. For example,
mother-of-pearl, or nacre, is a molluscan shell material that
exhibits phenomenal fracture strength and toughness proper-
ties despite the brittle nature of its constituents �1–14�. Its
work of fracture is about 3000 times greater than that of a
single crystal of its constituent mineral �1,2�. This is surpris-
ing because it is a ceramic composite made up of about 95%
brittle inorganic phase �aragonite, a mineral form of CaCO3�
and only a few percent of the soft organic material, and
synthetic polymer-matrix composites with such high levels
of ceramic fillers do not possess these exceptional combina-
tions of stiffness, fracture strength and toughness. The com-
posite is in the form of a unique “brick and mortar” �BM�
microarchitecture with staggered interlaced aragonite plate-
lets bonded together by soft organic layers, wherein the po-
lygonal aragonite platelets represent the bricks and the soft
organic material represents the mortar �see Fig. 1�. Under-
standing the mechanisms of such high damage tolerance of
nacre will enhance our ability to design materials for inno-
vative practical applications. This understanding is crucial to
synthesizing tough ceramics and nanoscale biocomposites
that have fracture toughness properties comparable to that of
nacre. Research on synthesizing such tough materials is cur-
rently under intense development since these materials can
be used in various defense related applications including that
of light-weight body armour.

In the earlier studies �1,3�, nacre’s extraordinary fracture
properties were believed to be the result of their unique BM
microarchitecture. However, synthetic ceramics having the
same BM microstructure as that of nacre did not possess
fracture toughness characteristics comparable to that of nacre
�15�. This led to further investigation of toughening mecha-

nisms that are responsible for nacre’s high fracture tough-
ness. Sarikaya et al. �5,6� proposed that nacre’s high fracture
resistance is due to sliding of platelets and formation of or-
ganic ligaments between platelets. Wang et al. �7� proposed
that crack deflection, branching and diversion combined with
platelet pullout and organic matrix bridging is the primary
mechanism leading to nacre’s high toughness. Roughness of
the platelet interfaces between the aragonite platelets and the
organic matrix has been proposed to be the main toughening
mechanism in Refs. �10,11�. Since the synthetic ceramics
having the BM microstructure with inorganic matrix binding
the platelets did not possess similar toughness values, Alm-
qvist et al. �15� suggested that the key to the nacre’s high
toughness could lie in the organic matrix that binds the ara-
gonite platelets. In particular, Almqvist et al. �15� pointed out
that ceramic composites with organic interfaces possess
higher fracture toughness compared to inorganic interfaces.
Subsequently, Smith et al. �8� proposed a mechanism based
on modular damage evolution of organic polymer adhesive
to explain the high fracture toughness of nacre. Okumura et
al. �12,16� have suggested that stress concentration is signifi-
cantly reduced by the presence of soft organic matrix and
this leads to higher toughness values of nacre. Recently,
Schaffer et al. �17� and Song et al. �18,19� have proposed
that the presence of mineral bridges between the aragonite
platelets combined with the modular damage evolution of the
organic polymer adhesive is the main mechanism leading to
phenomenal toughness of nacre. The relative abundance of
previous research on the toughening mechanisms of nacre
suggests that the main toughening mechanism that leads to
nacre’s high toughness is yet to be well understood.

The toughening mechanisms of nacre have also been stud-
ied using various analytical �20,21� and numerical �22–24�
models. Although these analytical and numerical models
have been successful in estimating the nacre’s stiffness accu-
rately, a good comparison with nacre’s �experimental�
strength, ductility and toughness values was not achieved.
The previous modeling studies have hinted at the possible
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reasons behind nacre’s toughness values based on certain in-
direct measurements and arguments. In this study, we inves-
tigate the fracture of nacre using discrete lattice models
based on statistical physics methodology. The discrete lattice
model proposed in this study captures the essential physics
of the problem; namely, the unique BM microarchitecture,
crack diversion and braching mechanisms, modular damage
evolution of the organic polymer adhesive, and the presence
of mineral bridges between the aragonite platelets. The stress
concentration effects in the vicinity of crack tips are auto-
matically captured by the numerical model while solving the
system of governing equations. The numerical results ob-
tained using this simple discrete lattice model are in excel-
lent agreement with the previously obtained experimental re-
sults, such as nacre’s stiffness, tensile strength, and work of
fracture.

Discrete lattice models have often been used to under-
stand the scaling properties of fracture in disordered materi-
als. A very well studied model is the random fuse model
�RFM�, where a lattice of fuses with random thresholds are
subject to an increasing voltage �25–28�. A resistor network
represents a scalar analog of an elastic medium and is thus
relatively simple to analyze, while retaining the essential
characteristic features of the problem. However, in order to
capture the modular damage evolution in the organic inter-

face that binds the aragonite platelets, we use a continuous
damage random thresholds fuse model �CDRFM� �29�,
wherein damage evolves in a modular fashion corresponding
to the sawtoothlike force-extension behavior of the organic
matrix that bonds aragonite platelets �see Fig. 2�. A similar
model has also been introduced for fiber bundle models in
Refs. �30,31�. Indeed, the modular sawtoothlike force-
extension behavior of CDRFM is consistent with the force-
extension behavior of a fiber bundle of mineral bridges be-
tween the aragonite platelets and the force-extension curves
corresponding to a repeated unfolding of protein molecules
in the organic polymer adhesive. It is in this sense that the
multiple failures of fuses in the CDRFM represent the effect
of mineral bridges and the organic polymer adhesive. It
should be noted that continuous damage spring and beam
lattice networks may also be used �see Ref. �32��, however,
CDRFM is a simple scalar discrete lattice model with fewer
degrees of freedom than the corresponding spring and beam
lattice analogs.

II. MODEL

The unique BM microarchitecture of nacre is modeled by
a square lattice network as shown in Fig. 1. The shear ele-
ments �fuses�, S, connect the long edges of the aragonite
platelets and the tension elements �fuses�, T, connect the
short edges of the aragonite platelets. The aragonite platelets
are represented by mineral elements �fuses� denoted by R.
The geometric features of the square lattice can be expressed
in terms of aragonite platelet dimensions. Assuming the
thickness of the platelet to be of unit dimension, the length of
the platelet is given by the aspect ratio, �, which denotes the
ratio of the length of the platelet to the thickness of the
platelet. The thickness of the organic matrix is denoted by h,
where h denotes the ratio of organic matrix thickness to the
thickness of the platelet.

We assume that the aragonite platelets carry tensile
stresses and the stress is transferred from one platelet to the
other by shear in the organic matrix. We also assume that the
tensile stresses change along the length of the platelets and
these stresses build up from the ends of the platelet �1�. That
is, the tensile stresses at the ends of the platelets is zero, and
hence the tension elements, T, do not carry any tensile
stresses. This is equivalent to removing the tension elements
from the model. In addition, the length dimension of the
aragonite platelets is divided into � number of R elements in
order to represent the building up of tensile stresses in the

FIG. 1. �Color online� Schematics of �a� Sheet nacre �top left�.
�b� Brick and mortar �BM� architecture of nacre �top right�. �c�
Square lattice topology representing the nacre’s BM architecture.
The matrix shear and tension elements connect, respectively, the
long and short edges of the platelets. The aragonite platelets are
represented by � �aspect ratio� number of mineral tension elements
to simulate building up of tensile stresses from the ends of the
platelets �bottom left�. �d� Square lattice topology without the ma-
trix tension elements that connect the short edges of aragonite plate-
lets �bottom right�.

FIG. 2. �Color online� Schematic of �a� mineral tension element
�fuse� behavior �left�, and �b� matrix shear element �fuse� behavior.
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platelets. Based on the above observations, the model that we
use in the numerical simulations is the model shown in Fig.
1 without the tension elements, T. This is in agreement with
the earlier models based on shear lag theory �1,20�. How-
ever, the present model incorporates the platelet interaction
effects and the redistribution of stresses automatically.

In the traditional random thresholds fuse model �RFM�,
the lattice is initially fully intact with bonds having the same
conductance, but the bond breaking thresholds, t, are ran-
domly distributed based on a thresholds probability distribu-
tion, p�t�. The burning of a fuse occurs irreversibly, when-
ever the electrical current in the fuse exceeds the breaking
threshold current value, t, of the fuse. In the CDRFM, how-
ever, multiple failures of the fuses are allowed depicting the
modular damage evolution of the organic matrix. That is, in
principle, a fuse representing the organic matrix can fail
more than once, and we define nmax as the maximum number
of failures allowed for each of the shear �S� elements. When-
ever the electrical current in the fuse exceeds the breaking
threshold current value, t, of the fuse, the conductance of the
fuse is reduced by a factor a�0�a�1�. Once a fuse has
failed nmax number of times, we allow for brittle failure of
the fuse. That is, the fuse is burnt irreversibly after nmax
number of failures. The numerical value of nmax is chosen
based on the values of maximum strain �potential difference�
that the bonds can withstand before failing irreversibly.

Assuming a unit out-of-plane dimension, since the length
and thickness of each of the mineral tension elements is also
of unit dimension, the conductance of each of the mineral
elements �R� is set equal to Ep, where Ep is the Young’s
modulus of the aragonite platelet. We assume that the ulti-
mate strength of the aragonite platelets is not reached during
loading, i.e., the mineral tension elements do not break. The
initial conductance of each of the shear elements �S� is set
equal to Gm /h, where Gm denotes the initial shear modulus
of the organic matrix layer. The bond breaking threshold cur-
rent at which the shear elements �fuses� break irreversibly is
prescribed randomly based on a thresholds distribution p�t�.
Whenever the current in the shear elements �fuses� exceeds
the breaking threshold current value, t, of the fuse, the con-
ductance of the fuse is reduced by a factor a�0�a�1�. Con-
sequently, the conductance of the organic matrix layer after
1� i�nmax number of breaks is given by Gi /h, where Gi
=aiGm. Once a shear element �fuse� has failed nmax number
of times, the fuse is burnt irreversibly. A schematic of min-
eral and shear element’s �fuse� behavior for the CDRFM is
presented in Fig. 2. Periodic boundary conditions are im-
posed in the horizontal direction to simulate an infinite sys-
tem and a constant voltage difference, V, is applied between
the top and the bottom of lattice system bus bars.

Numerically, a unit voltage difference, V=1, is set be-
tween the bus bars and the Kirchhoff equations are solved to
determine the current flowing in each of the fuses. Subse-
quently, for each fuse j, the ratio between the current ij and
the breaking threshold tj is evaluated, and the conductance of
the bond jc having the largest value, maxj�ij / tj�, is reduced
by a factor a�0�a�1�. If the fuse jc fails more than nmax

number of times, the fuse jc is irreversibly removed �burnt�,
otherwise, the breaking threshold of the fuse jc is either un-

changed �quenched disorder� or a different threshold t is cho-
sen for the fuse jc based on the probability distribution p�t�
�annealed disorder�. The current is redistributed instanta-
neously after the fuse failure implying that the current relax-
ation in the lattice system is much faster than the failure of a
fuse. Each time a fuse fails, it is necessary to recalculate the
current redistribution in the lattice to determine the subse-
quent failure of a fuse. The process of fuse failures, one at a
time, is repeated until the lattice system falls apart. This pro-
cess of failure of one fuse at a time corresponds to the qua-
sistatic approximation. It is well known that simulations
based on discrete lattice models �fuse, spring and beam mod-
els� often lead to somewhat unphysical I-V �stress-strain�
curves due to this quasistatic process of breaking one fuse
�bond� at a time �27�. In particular, they correspond neither
to a current �stress� controlled nor to a voltage difference
�strain� controlled experiment due to the finite stiffness of the
loading device and the fact that the current �or stress� relax-
ation times are much smaller than the time taken by the
loading device to react to the fuse failure event. However,
the same breaking sequence is expected when the voltage
difference �strain control� or the total current �stress control�
is increased at an infinitesimal rate �27�.

In this work, we consider two scenarios; one in which the
thresholds distribution for the shear elements is given by
p�t�=�s, where �s is the mean shear strength of the organic
matrix and this scenario corresponds to the case of no disor-
der in the thresholds, and the other in which the thresholds
distribution is given by a uniform probability distribution
between ��s−� ,�s+��, where 2� is the range of the thresh-
olds about the mean value of �s. With these features, the
proposed numerical model captures the unique features of
nacre, namely, the modular damage evolution of the organic
polymer adhesive, the modular damage evolution of the fiber
bundle of mineral bridges connecting the adjacent aragonite
platelets, and the BM microarchitecture.

Numerical simulation of fracture using large fuse net-
works is often hampered due to the high computational cost
associated with solving a new large set of linear equations
every time a new lattice bond fails. The authors have devel-
oped rank-1 sparse Cholesky factorization updating algo-
rithm for simulating fracture using discrete lattice systems
�33�. In comparison with the Fourier accelerated iterative
schemes �34� used for modeling lattice breakdown, this al-
gorithm significantly reduced the computational time re-
quired for solving large lattice systems.

III. NUMERICAL SIMULATIONS

For the numerical simulations, we employ a L�L square
fuse lattice network with periodic boundary conditions in the
horizontal direction and a constant voltage difference V is
applied between the top and bottom bus bars. As representa-
tive values, we assume the following geometric and material
properties �3,4,18,19�: the thickness of the aragonite platelet
is assumed to be 500 nm �14,18,19� and corresponds to a
unit dimension, the platelet aspect ratio is assumed to be �
=8 �3,4,19� corresponding to a length of 4 �m �18,19�, and
the thickness of the organic layer is assumed to be 25 nm
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�19� resulting in a nondimensional value of h= 1
20. A perfect

sheet nacre BM arrangement of platelets is represented by a
platelet overlap of �olap=50%. For the purposes of 2D nu-
merical simulation, the width of the platelet in the out-of-
plane direction is assumed to be of unit dimension. The
Young’s modulus of the aragonite mineral and the shear
modulus of the organic matrix are assumed to be Ep
=100 GPa �4� and Gm=4.6 GPa �4,19�, respectively.

In the fuse lattice network analogy, the conductances of
the mineral tension elements �R�, correspond to the axial
stiffnesses of the elastic spring elements, and are equal to Ep
since the thickness and length of each mineral tension ele-
ment is of unit dimension. Similarly, the initial conductances
of the shear elements �S�, correspond to the shear stiffnesses
of elastic shear springs, and are equal to Gm /h. Before pro-
ceeding with the statistical properties of nacre fracture, we
perform a deterministic fracture simulation of nacre using
the above representative set of parameters. For this represen-
tative set of numerical simulations, we assume that there is
no disorder in the bond breaking thresholds. Consequently,
the bond breaking thresholds distribution is given by p�t�
=�s, where we set the mean shear strength of the organic
matrix �s to be equal to 46 MPa for dry nacre �4,10,11,21�.
We assume that the modular damage evolution in the organic
layer is represented by multiple failures of shear elements,
and we set a=0.9 to signify that the conductivity of the fuse
drops to 90% of its previous value after every repeated fail-
ure of the fuse until the maximum number of failures of the
fuse is reached at which time the fuse is broken and the
stiffness is reduced to zero. The representative value for the
maximum number of failures a fuse can break is set at
nmax=log�	0 /	max� / log a�50 corresponding to a maximum
shear strain of 	max=0.10 �10%� in the organic matrix
�10,11,21�, where 	0=h�s /Gm.

In the following, we present the typical numerical results
obtained from a fuse lattice system of size L=64. The results
presented below seem to indicate that the scaling effects as-
sociated with lattice system sizes are not significant for this
lattice system size of L=64. However, wherever appropriate,
we compare the numerical results for both systems L=64 and
L=128. Figure 3 presents a typical stress-strain response and
its envelope obtained using the CDRFM. As mentioned ear-
lier, the unrealistic nature of stress-strain response �zig-zag
curve in Fig. 3� is a manifestation of breaking one bond at a
time using any of the discrete lattice models �fuse, spring,
and beam models�. This fact is well known in the literature
�see Ref. �27�; in particular see pp. 172 and 181 of Damage
and Fracture of Disordered Materials, edited by D. Krajci-
novic and J.G.M. van Mier�, and is due to the usage of dis-
crete lattice models for simulating fracture of quasibrittle
materials. The envelope of this zig-zag stress-strain response
however is similar to the experimental response, where ten-
sile failure in materials occurs at constant strain. In general,
the zig-zag parts of the stress-strain response are often used
to assess the avalanche signal characteristics of fracture pro-
cess.

In presenting our numerical results, we adopt the follow-
ing nomenclature. The stiffness refers to the initial slope of
the stress-strain curve �I /L versus V /L�. The peak current

Imax in the fuse lattice network corresponds to the peak load
Fmax of the lattice system. The tensile strength is given by

max=Fmax/L. Ductility refers to the ability of the material to
plastically deform, and in this sense we refer to the amount
of strain in the plateau region of the stress-strain curve as the
ductility. The toughness is referred to in the sense of work of
fracture, which is defined as the area under the �nominal�
stress-strain diagram multiplied by the length of the speci-
men.

A. Stiffness

Using the above representative material properties, the
initial conductance of the fuse lattice network is computed to
be 73.61 units, which corresponds to a lattice system stiff-
ness of 73.61 GPa. The computed stiffness is in close agree-
ment with the experimentally determined �dry� nacre stiff-
ness of 70 GPa �4�. It should be noted that besides the
Young’s modulus Ep of the aragonite mineral and the shear
modulus Gm of the organic matrix, there are many other fac-
tors such as the ratio of organic layer thickness to the thick-
ness of the aragonite platelet, h, the aspect ratio of the plate-
let, �, and the amount of overlap, �olap, of the aragonite
platelets �sheet nacre or columnar nacre� that effect nacre’s
stiffness. Figure 4 presents the variation of nacre stiffness
with these �Gm, h, �, and �olap� parameters. When simulations
are performed on a lattice system of size L=128, the lattice
system stiffness is estimated to be 73.52 GPa. From these
results, it is clear that the scaling effects associated with
lattice system sizes are negligible on the lattice system stiff-
ness.

Instead of assuming a perfect BM microarchitecture with
constant aspect ratios and platelet overlaps �� and �olap�, we
have also analyzed a random square lattice network in which
the aspect ratio, �, of each of the platelets is chosen at ran-
dom based on a uniform probability distribution such that
�� �6,10�, while keeping all other parameters �Gm

=4.6 GPa and h= 1
20� at their representative values. Figure 5

shows the final crack in a typical lattice sample of size L

FIG. 3. �Color online� Envelope of a typical stress-strain re-
sponse obtained using the CDRFM.
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=64. For L=128, the mean stiffness of such a lattice network
is estimated to be 74.16 GPa based on 25 sample lattice con-
figurations.

B. Tensile strength

In addition to a constant thresholds value p�t�=�s, we
have also investigated the tensile strength of a lattice net-

work with bond thresholds randomly prescribed based on an
uniform probability distribution between ��s−� ,�s+��,
where �s=46 MPa and �=6 MPa. For the representative set
of properties �Gm=4.6 GPa, h= 1

20, �=8, and �olap=50%�, the
stress-strain response as obtained by the I /L-V /L response of
the fuse lattice network is presented in Fig. 6 for both con-
stant and uniform bond thresholds distributions. For the con-
stant bond thresholds value �p�t�=�s�, the tensile strength
predicted by the fuse lattice network is 182.9 MPa although
the plateau of the stress-strain response is approximately at
175 MPa. For the uniform thresholds distribution �t
�Uniform��s−� ,�s+���, the mean tensile strength based on
25 sample configurations is 173.3 MPa whereas the plateau
of the stress-strain response is slightly below approximately
at 170 MPa. The tensile strengths computed by using larger
lattice system of size L=128 for constant and uniform
thresholds distributions are 182.9 MPa and 172.7 MPa, re-
spectively, which are once again in good agreement with the
values computed by a lattice network of size L=64. It should
be noted that the predicted tensile strengths using the fuse
lattice network are in excellent agreement with the experi-
mentally measured tensile strength of 167 MPa for dry nacre
�4�.

The effect of sheet and columnar BM microarchitecture
on the tensile strength can be investigated by changing the
amount of overlap, �olap, keeping all other parameters con-
stant. Figure 7 presents the effect of aragonite platelet over-
lap on the tensile strength of nacre for the representative set
of values. The results presented in Fig. 7 indicate that the
tensile strength is significantly effected by the amount of
platelets overlap. That is, for the same set of parameters,
sheet nacre has a higher tensile strength than that of colum-

FIG. 4. �Color online� Parametric study of nacre’s stiffness for
L=64. The base line study is for Gm=4.6 GPa, h= 1

20, �=8, and
�olap=50%. �a� Effect of the shear modulus of organic matrix. The
stiffness of wet nacre with Gm=1.4 GPa is 64.80 GPa. �b� Effect of
the ratio of organic layer thickness to the thickness of the platelet.
�c� Effect of the platelet aspect ratio. �d� Effect of sheet or columnar
microarchitecture of nacre.

FIG. 5. �Color online� Fractured surface of a typical lattice
sample configuration of size L=64.

FIG. 6. �Color online� Stress-strain response of nacre. The I-V
response of the fuse lattice network is normalized with the lattice
system size L to obtain the stress-strain response. The parameters
used are L=64, Gm=4.6 GPa, 	max=10%, h= 1

20, �=8, and �olap

=50%. The stress-strain response exhibits a constant plateau indi-
cating significant ductility. Red curve �the one with most ductility�
represents the case of constant thresholds value whereas the blue
curve �less ductility curve� represents the typical stress-strain re-
sponse in the case of uniform thresholds distribution.
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nar nacre although the stiffness is the same in both cases. In
addition to the perfect BM arrangement of platelets, we have
also considered the effect of random geometry �� and �olap
are random� on the stress-strain response of nacre. Once
again, the results presented in Fig. 8 clearly indicate that the
tensile strength of the lattice system is significantly influ-

enced by the randomness of the lattice geometry and the
amount over which the platelets overlap. The overall stress-
strain response presented in Figs. 6–8 �the stiffness, the
stress-strain plateau, and the strain at which plateau �or yield-
ing� sets in� is in excellent agreement with the experimental
stress-strain response presented in Fig. 1 of Ref. �10� �or Fig.
5�b� of Ref. �11��. Based on the results presented in Fig. 8,
the lower yield stress in these figures can be explained on the
basis of amount of overlap of aragonite platelets of nacre. We
have also considered the combined effect of random geom-
etry �� and �olap are random� and random uniform thresholds
distribution on the stress-strain response of nacre. The results
indicated that randomness �variation � about the mean shear
strength �s� in the breaking thresholds of the shear elements
�organic matrix� did not have as significant of an effect on
nacre’s tensile strength as the randomness in the platelet as-
pect ratios and their overlap, although increasing the mean
shear strength significantly increases the tensile strength.

As mentioned earlier, multiple failures of shear elements
�fuses� represent the modular damage evolution of the or-
ganic matrix, which can be attributed to the presence of fiber
bundle of mineral bridges between the aragonite platelets
and the repeated unfolding of protein molecules in the or-
ganic polymer adhesive. In the CDRFM, the conductivity of
the fuse elements is reduced by a factor a after each failure
of the fuse element until a maximum of nmax times. Figure 9
presents the effect of the reduction factor a on the lattice
network stress-strain response. The stress-strain response is
qualitatively similar for all of the a values considered in the
study.

FIG. 7. �Color online� Effect of platelet overlap, �olap on the
tensile strength of nacre. The parameters used are L=128, Gm

=4.6 GPa, 	max=10%, h= 1
20, �=8, and nmax=50. We consider

platelet overlaps of 4
8 ��olap=50%, red �top most��, 3

8 ��olap

=37.5%, blue �second from top��, 2
8 ��olap=25%, cyan �third from

top��, and 1
8 ��olap=12.5%, magenta �bottom��. The tensile strength

depends significantly on the amount of overlap of platelets.

FIG. 8. �Color online� Effect of randomness in the BM arrange-
ment of platelets on the tensile strength of nacre. The randomness in
the BM arrangement of platelets is equivalent to random � and �olap

values with � uniformly distributed in the range �8−� , 8+��. The
reference parameters used are L=128, Gm=4.6 GPa, 	max=10%, h
= 1

20, and nmax=50. �a� �=4 �red�, �b� �=3 �blue�, �c� �=2 �cyan�,
�d� �=1 �magenta�, �e� �=0 �black�, same as �=8 and �olap=50%
�red� plot of Fig. 7. A perfect BM arrangement of platelets with
maximum overlap area �i.e., �olap=50%� significantly increases the
tensile strength of nacre.

FIG. 9. �Color online� Effect of conductivity reduction factor, a,
on the tensile strength of nacre. The parameters used are L=64,
Gm=4.6 GPa, 	max=10%, h= 1

20, �=8, and �olap=50%. We consider
the following four values: a=0.9 �nmax=50, red �top most��, a
=0.8 �nmax=24, blue �second from top��, a=0.7 �nmax=15, cyan
�third from top��, a=0.6 �nmax=11, magenta �bottom��. The tensile
strength �maximum of stress-strain response� in all of the cases is
approximately the same �182.7 MPa, 182.3 MPa, 180.5 MPa, and
183 MPa, respectively�, however, smaller a values lead to a large
drop in the tensile strength before the response is stabilized.
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C. Work of fracture

It is clear from Figs. 6 and 7 that the macroscopic re-
sponse exhibits significant ductility due to the modular dam-
age evolution �multiple failure of fuses� of shear elements. In
Figs. 6 and 7, we have limited the maximum shear strain,
	max, in the organic matrix to 10%. Figure 10 presents the
effect of 	max on the work of fracture. The work of fracture
increases significantly with the increasing maximum shear
strain values in the organic matrix. From the results pre-
sented in Fig. 10, it is clear that a macroscopic strain of 1%
in the tension experiment corresponds to about 30%–40%
shear strain in the organic matrix. Figure 11 presents the
stress-strain response when the fibrils are assumed to with-

stand a maximum strain of 150% �4�. The corresponding
macroscopic strain is between 8%–9%. The results presented
in Figs. 10 and 11 suggest that the work of fracture of nacre
is orders of magnitude larger than that corresponding to ara-
gonite mineral.

D. Wet nacre

In general, the effect of water is to decrease the shear
modulus of the organic matrix and increase its ductility. The
shear modulus of the organic matrix of wet nacre is assumed
to be Gm=1.4 GPa �4�. Consequently, the initial conduc-
tances of the shear elements is set to 1.4�20=28 units. For
wet nacre, the mean shear strength of the organic matrix is
assumed to be �s=37 MPa �4�. Keeping all other parameters
the same �h= 1

20, �=8, and �olap=50%�, the stiffness of the
wet nacre is estimated to be 64.80 GPa, whereas the tensile
strength is estimated to be 147 MPa �the plateau is approxi-
mately at 140 MPa�. These results are in excellent agreement
with the experimentally determined values of 60 GPa and
140 MPa for the stiffness and tensile strength, respectively
�4�. Figure 12 presents a comparison of the stress-strain re-
sponse for dry and wet nacre assuming a maximum shear
strain of 	max=20% in the organic matrix. Since the effect of
water is to increase the ductility �maximum shear strain,
	max� of the organic matrix, based on the results presented in
Fig. 10, it can be concluded that the work of fracture of wet
nacre is greater than that of dry nacre.

E. Strength of aragonite platelets

So far, we have assumed that tension elements represent-
ing the aragonite mineral platelets do not fail. This is indeed
consistent with the experimenal observations �4�, wherein
the failure of platelets is not detected. However, in order to
design synthetic nanocomposites with fracture properties

FIG. 10. �Color online� Effect of maximum shear strain, 	max, in
the organic matrix on the work of fracture of nacre. The parameters
used are L=64, Gm=4.6 GPa, h= 1

20, �=8, and �olap=50%. We con-
sider maximum shear strains of 	max=10% �red, minimum ductil-
ity�, 	max=20% �blue�, 	max=31%, �cyan�, 	max=42%, �magenta�,
and 	max=52% �black, maximum ductility�.

FIG. 11. Stress-strain response when the maximum shear strain
in the organic matrix is set to 	max=150%. The parameters used are
L=64, Gm=4.6 GPa, h= 1

20, �=8, and �olap=50%.

FIG. 12. �Color online� Comparison of wet and dry nacre stress-
strain response. The parameters used are L=64, 	max=20%, h= 1

20,
�=8, and �olap=50%. Red curve �top curve� represents the dry na-
cre response whereas the blue curve �bottom curve� represents the
wet nacre response.
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comparable to those of nacre, it is necessary to understand
the levels of stress that are sustained by these hard mineral
platelets. In the synthesis of nanocomposites, knowing these
stress levels will enable us to select appropriate hard mineral
materials that mimic the functionality of aragonite platelets.

Since the aragonite platelets are divided into � number of
tension elements, the tensile stresses in these platelets build
up from the ends of the platelet and attain maximum at the
center of the platelets. During various numerical simulations
with perfect and random BM architecture, we have observed
that the maximum tensile stresses in the aragonite platelets
varied between 350–400 MPa. Figure 13 presents the maxi-
mum tensile stress observed in any of the aragonite platelet
elements during a typical simulation. For a platelet aspect
ratio of �=8 and the mean shear strength �s=46 MPa of the
organic matrix, the mineral strength based on Griffith crite-
rion �23� results in 368 MPa, which is consistent with the
result presented in Fig. 13. Hence, in order to design syn-
thetic composites with fracture properties comparable to that
of nacre, it becomes necessary for the mineral platelets to
sustain tensile stresses of the order of 400 MPa. It should
however be noted that these computed maximum tensile
stresses in the aragonite platelets are an order of magnitude
smaller than the theoretical strength, 
th, of a perfect arago-
nite crystal �
th�Ep /30�3 GPa�.

IV. CONCLUSIONS

This study presented a simple continuous damage random
thresholds fuse network model to understand the fracture be-
havior of nacre. The significance of the proposed numerical
model is that it captures the essential physics of the problem;
namely the underlying “brick and mortar” architecture and
the modular damage evolution of the organic interface be-
tween the aragonite platelets. The discrete fuse lattice topol-
ogy mimics the nacre’s unique BM microarchitecture such
that the aragonite platelets are modeled by fuses that never
fail and the organic matrix between the aragonite platelets is

modeled by shear elements �fuses� that can fail multiple
times thereby representing the modular damage evolution
that is characteristic of organic polymers. Indeed, multiple
failures of shear elements �fuses� in the CDRFM results in a
modular sawtoothlike force-extension behavior that is con-
sistent with the force-extension behavior of a fiber bundle of
mineral bridges between the aragonite platelets and the
force-extension curves corresponding to a repeated unfolding
of protein molecules in the organic polymer adhesive. It is in
this sense that the multiple failures of fuses in the CDRFM
represent the effect of mineral bridges and the organic poly-
mer adhesive. Compared with the previous analytical and
numerical models, the significance of the proposed CDRFM
model is that it is the first model that can accurately capture
the plateau �ductility� of the nacre’s stress-strain response,
the onset of yielding, and the work of fracture, which was
not possible with the previously existing models.

The numerical results obtained using this simple CDRFM
are in excellent agreement with the previously obtained ex-
perimental results, the stiffness of �dry� nacre is estimated to
be 73.61 GPa as against experimentally determined value of
70 GPa; the stress-strain response exhibited a plateau with a
tensile strength of 175 MPa as against experimentally deter-
mined value of 167 MPa; and the results clearly indicate that
the work of fracture of nacre is significantly �orders of mag-
nitude� larger than that of pure aragonite mineral. For wet
nacre, the estimated stiffness is 64.80 GPa compared to an
experimental value of 60 GPa, and the stress-strain response
is similar to that of dry nacre response, which exhibited a
plateau corresponding to a tensile strength of 140 MPa that
is in excellent agreement with the experimental tensile
strength of 140 MPa. Assuming that the effect of water is to
increase the ductility of the organic matrix, the results pre-
sented in Fig. 10 suggest that the work of fracture of wet
nacre is significantly higher than that of dry nacre.

To summarize, nacre’s phenomenal fracture behavior is
due to three important factors: namely, the perfect BM ar-
rangement of platelets with maximum overlap area between
platelets, the mean shear strength of the organic matrix, and
the modular damage evolution aspect of the organic matrix
that can withstand very large strains before complete inter-
face failure occurs. In particular, its superior toughness is a
direct consequence of ductility �maximum shear strain� of
the organic matrix, and its high fracture strength is a result of
its unique BM architecture with significant overlap of the
platelets, and the shear strength of the organic matrix.

Based on our computational modeling studies, in order to
artificially synthesize tough ceramics or nanoscale biocom-
posites, it is necessary that the constituent materials possess
the following properties:

�i� Mimic the nacres unique BM arrangement of mineral
platelets and organic matrix with significant overlap of the
platelets.

�ii� The damage in the organic matrix evolves in a modu-
lar fashion corresponding to the sawtoothlike force-extension
behavior. In addition, the ductility �maximum shear strain at
which the ultimate failure of the organic matrix occurs� of
the organic matrix should be large.

�iii� The tensile strength of the mineral platelets should
exceed 400 MPa.

FIG. 13. �Color online� Maximum tensite stress in any of the
aragonite platelets during a typical simulation.
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